\square
MAIT coikeU|SHES MERGING CONTENT WITH AGTIVITY BASED COURSES

Carolynn Reed, Department Chair Colleen Hosking, Associate Professor

ACC PROFILE

- Multi-campus, single college district with 11 campuses
- 7,000-square-mile service area
- Enroll 70,000+ students annually (credit/CE/AE)
- ~80\% Part-Time, 20\% Full-Time
- Only 20% of students placed in developmental math have successfully completed a gateway course after 3 years (CCRC Study)
- Students often don't sign up for math again, regardless of whether or not they were successful in their first developmental math course
- Corequisites give developmental students the chance to exit remediation and complete their gateway math course in one semester
- Current data
\rightarrow Losing the most students in non-STEM
\rightarrow High non-STEM demand
- Current resources
\rightarrow Had developed accelerated non-STEM developmental course
\rightarrow Innovative faculty involved in non-STEM
- Potential for greatest impact

AUSTIN OMMUNITY COLLEGE

- Requested access to data
- Administrative support
- Master plan for corequisite scaling for both STEM and non-STEM
- Looked to other schools with successful corequisites
- Assigned faculty leads
\rightarrow committee for each gateway course including full-time and adjunct faculty
- Determined two preparation levels and planned a corequisite for each group
- Worked with advising, financial aid and reporting to determine best structure
- Backward mapping - develop support needed for specific gateway course
- Faculty professional development - initial and ongoing

NON-STEM FLOWGHART

*ONE AND DONE: These are co-requisite courses, combining developmental support with a $1^{\text {tt }}$ semester college course in one semester.

austincc.edu

STEM FLOWCHART

STEM PATH

ONE AND DONE*
Algebra Express
MATD 0414
Accelerated
Developmental
Algebra
Paired with
MATH 1314
College Algebra

austincc.edu

AUSTIN
 HIGHER PREPARATION LEVEL

- Mainstreaming model \rightarrow gateway course has mix of developmental and college-level students
- Non-STEM - 4 credit hours
(1 hour support + 3 hour gateway course)
- STEM - 5 credit hours (2 support + 3 gateway)
- Support course
\rightarrow Meets before or after gateway course
\rightarrow Provides just-in-time support
- Developmental content fully integrated into gateway curriculum
- Non-STEM 6 credit hours (3 hour support + 3 hour gateway course)
- STEM 7 credit hours (4 support + 3 gateway)
- Two instructors co-teaching

LOWER PREP NON-STEM

- Collaborative Learning
- Active Learning
- Scaffolding

Contemporary Math
 Corequisite Activity

Section 24: Unit Conversion

Students are introduced to the concept of units...

CME Unit Conversion Group Activity

The goal of the activity is to use dimensional analysis to convert units.

Introduction

- Units of a quantity describe what the quantity measures or counts.

1. a) What units could you use if you were describing the distance from Austin to San Antonio? \qquad
b) What units could you use if you are buying a house and you want to know how large it is? \qquad

- We can describe units using words OR using an abbreviated form.

Example: When you are driving a car, your speed is read as $\frac{\text { miles per hour }}{\text { Words }}$ and written as $\frac{\mathrm{mi} / \mathrm{hr}}{\text { Abbreviated }}$ (or mph).
2. Based on the example, what math operation does the word "per" mean? \qquad
3. Suppose you are buying some fabric. To calculate the unit price, you divide the price (in dollars) by the area (in square yards). The units are written as $\$ / y d^{2}$.

Write the units using words: \qquad
Note: "square" corresponds to a 2 exponent on the units. What exponent will you use for "cubic"? \qquad
4. The flow rate of a river is 5000 cubic feet per second. Write the units in abbreviated form: \qquad
 .edu

Layering \& Scaffolding...

Unit conversion (presented at the developmental level)

Unit Conversion

5. We know that 12 inches $=1$ foot. This is an example of a conversion factor and can be written in three equivalent ways:

Extra support early on in the activity

```
Check your work:
Did you start with the given value as a
    fraction?
\square ~ D i d ~ y o u r ~ u n i t s ~ c a n c e l ? ~
Did you end up with the correct units?
\square ~ D i d ~ y o u ~ i n c l u d e ~ t h e ~ c o r r e c t ~ u n i t s ~ i n
your final answer?
```

20 feet
1 minute

Your turn!

Practicing, deepening...

We are not given a conversion factor between inches and yards. Sometimes you will need to use more than one conversion factor in the problem. For example, we can convert inches to feet and then feet to yards.

Additional support inserted as needed...

From the table, you get two different conversion factors between US dollars (\$) and British pounds (GBP) In the "Dollars per Foreign" column, the number 1.221 gives the conversion factor:

$$
\$ 1.221=1 \mathrm{GBP} \quad \text { OR } \quad \frac{\$ 1.221}{1 G B P}
$$

Think: 1.221 dollars per $1 \underline{\text { GBP. }}$
What conversion factor comes from the number 0.8191 in the "Foreign per Dollar" column?
Cantaloupes sell for 1.80 euros per kilogram in Belgium. What is the price in units of U.S. dollars per pound? Use the exchange rates in the table above and the conversion factor: $1 \mathrm{~kg}=2.205 \mathrm{lb}$.

Think: 0.8191 \qquad per 1 \qquad Conversion factor: \qquad $=$ \qquad

Suppose you are travelling from the United States to Europe.
a) Use the table to write two different conversion factors between the European euro and US dollars.

austincc.edu

Organizing

 InstructorResources

Group Activities Website

Group Activities for Mathematics Courses

Basic Math Group Activities

Start Here.

College Math Express: Study Skills \& Group Activities

Section 2A CME Unit Conversion by Joey Offer and Marisa Bjorland
This activity is similar to the MatD 0485 Unit Conversion activity, but with problems added from Bennett and Briggs. The activity uses a step-by-step guide to help students understand dimensional analysis. An introduction was added to cover unit abbreviations. Currency Conversion is at the end. (Metric units are included in this activity since they are included in a few of the 2A homework problems, but note that they aren't formally introduced until 2B).

CME Square \& Cubic Units, by Joey Offer and Marisa Bjorland This activity is similar to the MatD 0485 Square \& Cubic Units activity, but with problems added from Bennett and Briggs. Students use units to help determine area and volume calculations. Two practice problems are included and a chart at the end summarizes what type of unit is used for the different types of measurements.

Activity
 Subpage

- Starts with textbook correlation
- Quick access to activity PDF file
- Time estimate based on pilot semester

CME Unit Conversion

Correlation: section 2 A

- Unit conversions, conversion factors, Metric-UCSC conversions (2B), currency conversions
- does not include principles of unit analysis, conversions with units raised to powers, or the Understand-Solve-Explain process

Prerequisites: cancelling with fractions

Materials needed: copies of the activity Download (PDF).

Approximate time for the activity: 60-80 minutes
*Standardized Temperature Units is not on the Math 1332 recommended HW

Overview

The goal of the activity is to use unit analysis to convert units and solve problems.
This activity is similar to the MatD 0485 Unit Conversion activity, but with problems added from Bennett and Briggs. The activity uses a step-by-step guide to help students understand dimensional analysis. An introduction was added to cover unit abbreviations.
Currency Conversion is at the end.

Activity
 everes

Before the activity
Review canceling with fractions.
Examples:
a) $10 m \cdot \frac{2 n}{15 m}$
b) $8 x y \cdot \frac{7}{16 x}$

Review converting a fraction to a decimal. Example: $28 / 9=3.111$

- Overview
- Before the Activity
- During the Activity (Instructor Key
 included here)
- After the Activity

During the activity.

Answer Key: Download
Walk around and check that students are using the method of cancelling units to solve the problems. Students may try to avoid using this method, especially on the simple one-step conversions.

After the activity.

Go over the last page of problems as a class.

Have faster groups re-visit the original problem on the board and try to solve it using the techniques they have just learned. Go over it as a class.

USTIN

- Grouped by section with specific learning outcomes identified
- Nice if there is a mix of shorter and longer activities to see coverage at a glance build the z-score as a concept before doing any calculations. Concludes with percentiles.

Section 2.4 One Quantitative and One Categorical Variable

- LO 2.4.1 Identify outliers in a dataset based on the IQR method
- LO 2.4.2 Use a boxplot to describe data for a single quantitative variable
- LO 2.4.3 Use a side-by-side graph to visualize a relationship between quantitative and categorical variables
- LO 2.4.4 Examine a relationship between quantitative and categorical variables using comparative summary statistics

Activity (name, authors, description)	Authors	LOs covered
Boxplots Students practice reading and drawing boxplots as a visual representation of the	Colleen Hosking	LO 2.4.1
numerical summaries for skewed data. The activity includes calculation of outlier fences and	Norma James	LO 2.4.2
walks students through this step-by-step, including how to adjust the boxplot to flag potential	Allison Sutton	LO 2.4.3
outliers that fall beyond the fences. Concludes with use of technology and a look at unusual		LO 2.4.4
boxplots.		

Study Skills Support Materials

The following links to the activities we used to use in our MATD 0332 Basic Math with Study Skills course. There are some great options for use in our NCBM 0142 sections. Feel free to adapt them as needed. Topics include:

- Student Commitment Contract
- Taking Good Notes
- Managing Time
- Preparing for Exams (Before, Durin
- Managing Stress/Mindset

Activities site also contains study skills support materials

First Day of Class/Beginning of Semester	Grow your Brain Activity: Grow Your Brain Activity. The goal of this activity is to have students read an article about how to grow your brain and help them better understand how they might learn math better.
	Vocabulary and Flash Cards: Vocabulary and flash cards by Mary Parker, with an alternate glossary version by Christy Dittmar and Marisa Bjorland.
Before Each Test	"Preparing for the Test" Activity: You can customize this reflective checklist to help your students prepare for each test. Download (Word). *This activity was modified from the 0332 materials for Kelly Holman's 1332 course. You will need to modify the activity to fit your course.
After Each Test	"Analyzing Test Mistakes" Activity: You can customize this activity to help students reflect on their test performance. This activity is not a test corrections activity. The activity assumes a detailed answer key has been posted for students to refer to. Download (PDF). *This activity was modified from the 0332 materials for Kelly Holman's 1332 course. You will need to modify the activity to fit your course.
Mid-Semester	Mid-Semester Check-In Activity: Download (Word). A self-reflection activity designed to help students identify areas where they can improve habits, mindset, and behavior. Includes concrete goal-setting on second page. Modify page 1 to fit your instructional methods and unique problem areas with your group of students. Modify page 2 with grading scheme. (Only Word file is provided since modifications will be necessary.)
A brief handout about Test Anxiety: Download (Word).	

austincc.edu

Statistics Corequisite Activity

Measures of Spread

Students begin the section with an activity on mean and standard deviation, then move into an activity on the 95% rule and z-scores.

Activity - Understanding the Standard Deviation, Section 2.3

Numerical Summaries

We have learned that graphs are a great way to see the "big picture" for a data set at a glance. They give us a general idea of the shape, center, and variation. Once we have this big picture, statisticians often like to look more closely at the center and variation of the data set. They do this by finding numerical summaries, which are calculations that give numbers we can use to represent the center and variation of a data set.
Measure of Center: Mean

Mean (or arithmetic average) $=\overline{\boldsymbol{x}}$
This is a measure of center, interpreted as the "typical value" of a data set.
Step 1: Find the sum of all the values in your list. Step 2: Divide by n, the number of values in your list.

$$
\bar{x}=\frac{\text { sum }}{n}
$$

Standard Deviation = s

This is a measure of variation, the "typical distance" of a data value to the mean of the data set. The standard deviation represents distance so it is always nonnegative.
**We will use technology to calculate the standard deviation, or it will be provided. **

Your turn!

The 95\% Rule, z-scores and Percentiles Activity

Getting an comfortable with standard deviation as a unit of measurement.... COMMUNTY

4. Suppose the heights of all men are approximately symmetric and bell-shaped with a mean of 70 COHEGE inches and a standard deviation of 4 inches.
a. Assume the tick marks are spaced a distance of 1 standard deviation apart. (Refer to Figure 2.18 on page 1.)

Label the mean height, and the heights that are 1, 2,
 and 3 standard deviations above and below the mean.
5. In statistics, we will use the variable " z " to represent the number of standard deviations a data value is from the mean. We will call this value a \mathbf{z}-score.
a. The height 66 inches has a z-score of -1 . Why?
b. Find the z-scores for the following heights.

78 inches: $\mathbf{z =}$ \qquad -
58 inches: $\mathbf{z =}$ \qquad
70 inches:
z = \qquad

austincc.edu

Concluding with a statistics-level problem

A \mathbf{z}-score is the number of standard deviations a data value is from the mean. We calculate z as follows:

$$
z=\frac{\text { data value }- \text { mean }}{\text { standard deviation }}
$$

For samples, this looks like: $Z=\frac{x-\bar{x}}{s}$ For populations, this looks like: $Z=\frac{x-\mu}{\sigma}$

Calculator Tip Hit $=$ after subtracting. Then divide.

6. The following is a dotplot of the same gymnast height data from Problem 1.

Suppose a gymnast from this group states their height is in the $90^{\text {th }}$ percentile.
a. What percent of the heights are higher than this gymnast's height? \qquad ? \qquad
b. With 180 gymnasts, how many of the gymnasts are taller than this gymnast?
c. Use the count in (b) and the dotplot to find the gymnast's height. \qquad _
d. Calculate the z-score for their height using the mean and standard deviation from Problem 1.
e. Which is more unusual: A man with a height of 66 inches (Problem 5) or the height of this gymnast? How do you know?

austincc.edu

Challenges \& Successes

Success rates for college-level students in standalone sections

Austin
What percent of students completed a college-level math course?

58\% after
1 semester Coulics

- Inexperience with using collaborative learning (Online Training)
- Insecurity with college-level content for some dev. math instructors
- Group pacing (monitoring group speed)
- Inadequate reading levels
- Writing complete sentences
- Team Teaching is hard!

TIN

- Fully integrate developmental math skills into college-level content
- Writing with your textbook in mind - it's their resource
- Use scaffolding on college-level content to help students achieve understanding through small steps
- Instructor website with activities \& keys
- Ongoing mandatory trainings
- Faculty mentor/point-person
- Team Teaching training and planning recommendations
- Consider a reading/writing prerequisite
- Collaborate with advising, financial aid, and reporting areas

Materials from this session available at:
https://sites.google.com/a/austincc.edu/chosking/conference-materials

CME Unit Conversion Group Activity

The goal of the activity is to use dimensional analysis to convert units.

Introduction

- Units of a quantity describe what the quantity measures or counts.

1. a) What units could you use if you were describing the distance from Austin to San Antonio? \qquad
b) What units could you use if you are buying a house and you want to know how large it is? \qquad

- We can describe units using words OR using an abbreviated form.

Example: When you are driving a car, your speed is read as $\frac{\text { miles per hour }}{\text { Words }}$ and written as $\frac{\mathrm{mi} / \mathrm{hr}}{\text { Abbreviated }}$ (or mph).
2. Based on the example, what math operation does the word "per" mean? \qquad
3. Suppose you are buying some fabric. To calculate the unit price, you divide the price (in dollars) by the area (in square yards). The units are written as $\$ / y d^{2}$.

Write the units using words: \qquad
Note: "square" corresponds to a 2 exponent on the units. What exponent will you use for "cubic"? \qquad
4. The flow rate of a river is 5000 cubic feet per second. Write the units in abbreviated form: \qquad

Unit Conversion

5. We know that 12 inches $=1$ foot. This is an example of a conversion factor and can be written in three equivalent ways:

$$
12 \mathrm{in}=1 \mathrm{ft} \quad \text { or } \quad \frac{12 \mathrm{in}}{1 \mathrm{ft}} \quad \text { or } \quad \frac{1 \mathrm{ft}}{12 \mathrm{in}}
$$

Notice that both fraction forms have a value in the numerator that is equal to the value in the denominator, so the fraction is equal to 1 . These are called unit fractions.

- Write all three forms of the conversion factor we can use to convert between seconds and minutes.

6. Let's convert 20 feet per minute to feet per second. Choose the correct conversion factor from \#5. Include units.

Check your work:

Did you start with the given value as a fraction?
Did your units cancel?
Did you end up with the correct units?
\square Did you include the correct units in your final answer?

Common Conversions:

1 foot $(\mathrm{ft})=12$ inches (in)	2 cups $(\mathrm{c})=1$ pint (pt)
1 yard $(\mathrm{yd})=3$ feet (ft)	2 pints $(\mathrm{pt})=1$ quart (qt)
1 mile $(\mathrm{mi})=5280 \mathrm{feet}(\mathrm{ft})$	32 fluid ounces $(\mathrm{fl}$ oz) $)=1$ quart(qt)
1 year $(\mathrm{yr})=365$ days	4 quarts (qt) 1 gallon (gal)
1 day $=24$ hours (hr)	16 ounces $(\mathrm{oz})=1$ pound (lb)
1 hour $(\mathrm{hr})=60$ minutes (min)	2000 pounds $(\mathrm{lb})=1$ ton

UCSC-Metric Conversions:

$1 \mathrm{in}=2.540 \mathrm{~cm}$
$1 \mathrm{yd}=0.9144 \mathrm{~m}$
$1 \mathrm{mi}=1.6093 \mathrm{~km}$
$1 \mathrm{~kg}=2.205 \mathrm{lb}$
$1 \mathrm{qt}=0.9464 \mathrm{~L}$
$1 \mathrm{gal}=3.785 \mathrm{~L}$

7. You plan to go to France, and you know the speedometer will be in kilometers per hour. You want to know what 60 miles per hour is in kilometers per hour.
a. What speed are you asked to convert (the starting speed)? \qquad
b. What are the units you are asked to convert to? \qquad
c. Use the table to write down a conversion factor that might help convert from part a to part b. Write it in three forms.
d. Use the following steps to make the conversion. Round to one decimal place and include units.

\qquad

Check your work:
Did you start with the given value as a fraction?
\square Did your units cancel?
\square Did you end up with the correct units?
\square Did you include the correct units in your final answer?
8. Toddlers can drink a lot of milk! In one year, a toddler drinks about 12 gallons of milk. How many liters is this? Round to one decimal place. Note: Here the given value isn't a fraction (no "per"). We make it a fraction by writing it over 1.
$\frac{12 \mathrm{gal}}{1} \cdot \square \approx$

Check your work:

Did you start with the given value as a fraction?
Did your units cancel?

Did you end up with the correct units?
$\square \quad$ Did you include the correct units in your final answer?
9. Practice. Convert 16 liters to quarts. Round to one decimal place.
\qquad -ــ
10. In celebration of National Cookie Day, the residents at Sesame Street baked a gigantic cookie for one of the characters on the show, Cookie Monster. The cookie was 180 inches in circumference. How many yards is the circumference of the cookie?
a. What is the amount you are asked to convert? \qquad
b. What are the units you are asked to convert to? \qquad
c. We are not given a conversion factor between inches and yards. Sometimes you will need to use more than one conversion factor in the problem. For example, we can convert inches to feet and then feet to yards.

Simplify the expression and find the answer:

$$
\frac{180 \mathrm{in}}{1} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in}} \cdot \frac{1 y d}{3 f t}=
$$

What do you notice about the units? \qquad
Are the units you are being asked to covert to in the numerator or denominator? \qquad

To Convert Units:						
Given Amount (If not a fraction, write over a 1.)	\times	Conversion Factor \#1* Did units cancel?	\times	Conversion Factor \#2* Did units cancel?	$=$	Converted Amount Are you left with the desired units?

* Use more conversion factors as needed and write them so that units cancel and you end up with the desired units.

11. Practice. Convert 5 years to hours (neglecting leap years).

Currency Conversions: Refer to the Currency Exchange Rate Table* for Questions 12-15:

TABLE 2.1 Sample Currency Exchange Rates (January 2017)

Currency	Dollars per Foreign	Foreign per Dollar
British pound	1.221	0.8191
Canadian dollar	0.7586	1.318
European euro	1.058	0.9449
Japanese yen	0.008658	115.5
Mexican peso	0.04574	21.86

*Table 2.1 is from Bennett \& Briggs "Using and Understanding Mathematics," $7^{\text {th }}$ edition
12. From the table, you get two different conversion factors between US dollars (\$) and British pounds (GBP). In the "Dollars per Foreign" column, the number 1.221 gives the conversion factor:

$$
\$ 1.221=1 \mathrm{GBP} \quad \text { OR } \quad \frac{\$ 1.221}{1 G B P} \quad \text { Think: } 1.221 \underline{\text { dollars }} \text { per } 1 \underline{\mathrm{GBP}} .
$$

What conversion factor comes from the number 0.8191 in the "Foreign per Dollar" column?
Think: 0.8191
per 1 \qquad Conversion factor: \qquad $=$ \qquad
13. Suppose you are travelling from the United States to Europe.
a) Use the table to write two different conversion factors between the European euro and US dollars.
b) How many euros is $\$ 200$ worth?
14. Cantaloupes sell for 1.80 euros per kilogram in Belgium. What is the price in units of U.S. dollars per pound? Use the exchange rates in the table above and the conversion factor: $1 \mathrm{~kg}=2.205 \mathrm{lb}$.
15. A 0.8 -liter bottle of Mexican wine costs 100 pesos. At that price, how much would a half-gallon jug of the same wine cost in dollars? Hint: First find the price of wine in units of U.S. dollars per gallon.

CME Unit Conversion Group Activity

The goal of the activity is to use dimensional analysis to convert units.

Introduction

- Units of a quantity describe what the quantity measures or counts.

1. a) What units could you use if you were describing the distance from Austin to San Antonio? MileS
b) What units could you use if you are buying a house and you want to know how large it is?

- We can describe units using words OR using an abbreviated form.

Example: When you are driving a car, your speed is read as miles per hour and written as $\frac{\mathrm{mi} / \mathrm{hr}}{\text { Abbreviated }}$ (or mph).
2. Based on the example, what math operation does the word "per" mean?

3. Suppose you are buying some fabric. To calculate the unit price, you divide the price (in dollars) by the area (in square yards). The units are written as $\$ / y d^{2}$.

Write the units using words:

Note: "square" corresponds to a 2 exponent on the units. What exponent will you use for "cubic"?

4. The flow rate of a river is 5000 cubic feet per second. Write the units in abbreviated form:

Unit Conversion

5. We know that 12 inches $=1$ foot. This is an example of a conversion factor and can be written in three equivalent ways:

$$
12 \mathrm{in}=1 \mathrm{ft} \quad \text { or } \quad \frac{12 \mathrm{in}}{1 \mathrm{ft}} \text { or } \quad \frac{1 \mathrm{ft}}{12 \mathrm{in}}
$$

Notice that both fraction forms have a value in the numerator that is equal to the value in the denominator, so the fraction is equal to 1 . These are called unit fractions.

- Write all three forms of the conversion factor we can use to convert between seconds and minutes.

6. Let's convert 20 feet per minute to feet per second. Choose the correct conversion factor from \#5. include units.

Check your work:

$\sqrt{4}$ Did you start with the given value as a fraction?
Did your units cancel?
$\sqrt{ }$ Did you end up with the correct units?
$\sqrt{7}$ Did you include the correct units in your final answer?

Common Conversions:

1 foot $(\mathrm{ft})=12$ inches (in)	2 cups $(\mathrm{c})=1$ pint (pt)
1 yard $(\mathrm{yd})=3$ feet (ft)	2 pints $(\mathrm{pt})=1$ quart (qt)
1 mile $(\mathrm{mi})=5280$ feet (ft)	32 fluid ounces $(\mathrm{fl}$ oz $)=1$ quart (qt)
1 year $(\mathrm{yr})=365$ days	4 quarts $(\mathrm{qt})=1$ gallon (gal)
1 day $=24$ hours (hr)	16 ounces $(\mathrm{oz})=1$ pound (lb)
1 hour $(\mathrm{hr})=60$ minutes (min)	2000 pounds $(\mathrm{lb})=1$ ton

UCSC-Metric Conversions:

$1 \mathrm{in}=2.540 \mathrm{~cm}$
$1 \mathrm{yd}=0.9144 \mathrm{~m}$
$1 \mathrm{ml}=1.6093 \mathrm{~km}$
$1 \mathrm{~kg}=2.205 \mathrm{lb}$
$1 \mathrm{gt}=0.9464 \mathrm{~L}$
$1 \mathrm{gal}=3.785 \mathrm{~L}$

7. You plan to go to France, and you know the speedometer will be in kilometers per hour. You want to know what 60 miles per hour is in kilometers per hour.
a. What speed are you asked to convert (the starting speed)?

b. What are the units you are asked to convert to?
c. Use the table to write down a conversion factor that might help convert from part a to part b. Write it in three forms.

d. Use the following steps to make the conversion. Round to one decimal place and include units.

Check your work:
\downarrow Did you start with the given value as a fraction?
D. Did your units cancel?
\checkmark Did you end up with the correct units?
$\not \square D$ Did you include the correct units in your final answer?
8. Toddlers can drink a lot of milk! In one year, a toddler drinks about 12 gallons of milk. How many liters is this? Round to one decimal place. Note: Here the given value isn't a fraction (no "per"). We make it a fraction by writing it over 1.
$\mathrm{gal}_{\mathrm{L}}=3.785 \mathrm{~L}$

$$
\frac{12 \text { gat }}{1} \cdot \frac{3.785 L}{1 \text { gat. }} \approx 45.42 \text { or } 45.4 L
$$

Check your work:

∇ Did you start with the given value as a fraction?
$\sqrt[7]{\text { Did you end up with the correct units? }}$
$\sqrt{7}$ Did your units cancel?
$\sqrt{ } \sqrt{ }$ Did you include the correct units in your final answer?
9. Practice. Convert 16 liters to quarts. Round to one decimal place. $109=9464 \mathrm{~L}$

10. In celebration of National Cookie Day, the residents at Sesame Street baked a gigantic cookie for one of the characters on the show, Cookie Monster. The cookie was 180 inches in circumference. How many yards is the circumference of the cookie?
a. What is the amount you are asked to convert?

b. What are the units you are asked to convert to?

c. We are not given a conversion factor between inches and yards. Sometimes you will need to use more than one conversion factor in the problem. For example, we can convert inches to feet and then feet to yards.

Simplify the expression and find the answer:

What do you notice about the units? Mooches \& Feet cancel
Are the units you are being asked to covert to in the numerator or denominator?

To Convert Units:

\(\left.$$
\begin{array}{|c|}\hline \begin{array}{l}\text { Given Amount } \\
\text { (If not a fraction, } \\
\text { write over a 1.) }\end{array} \\
\hline\end{array}
$$ \begin{array}{c}Conversion

Factor \#1*

Did units cancel?\end{array}\right] \times\)| Conversion
 Factor \#2*
 Did units cancel? |
| :---: |

* Use more conversion factors as needed and write them so that units cancel and you end up with the desired units.

11. Practice. Convert 5 years to hours (neglecting leap years).

Currency Conversions: Refer to the Currency Exchange Rate Table* for Questions 12-15:

TABLE 2.1	Sample Currency Exchange Rates (January 2017) Da rs	
Currency	Dollars per Foreign	Foreign per Dollar
British pound	1.221	0.8191
Canadian dollar	0.7586	1.318
European euro	1.058	0.9449
Japanese yen	0.008658	115.5
Mexican peso	0.04574	21.86

*Table 2.1 is from Bennett \& Briggs "Using and Understanding Mathematics," $7^{\text {th }}$ edition
12. From the table, you get two different conversion factors between US dollars ($\$$) and British pounds (GBP). In the "Dollars per Foreign" column, the number 1.624 gives the conversion factor:

$$
\$ 1.221=1 \mathrm{GBP} \quad \text { OR } \quad \frac{\$ 1.221}{1 \mathrm{GBP}} \quad \text { Think: } 1.221 \underline{\text { dollars }} \text { per } 1 \underline{\mathrm{GBP}} .
$$

What conversion factor comes from the number 0.8191 in the "Foreign per Dollar" column?
Think: 0.8191
 per 1
 Conversion factor: \qquad $=$ \qquad
13. Suppose you are travelling from the United States to Europe.
a) Use the table to write two different conversion factors between the European euro and US dollars.

OR written
as unit
fractions)
b) How many euros is $\$ 200$ worth?

14. Cantaloupes sell for 1.80 euros per kilogram in Belgium. What is the price in units of U.S. dollars per pound? Use the exchange rates in the table above and the conversion factor: $1 \mathrm{~kg}=2.205 \mathrm{lb}$.

15. A 0.8 -liter bottle of Mexican wine costs 100 pesos. At that price, how much would a half-gallon jug of the same wine cost in dollars? Hint: First find the price of wine in units of U.S. dollars per gallon.

2.3 (Part 2): The 95\% Rule, z-Scores, and Percentiles

1. The heights of gymnasts in the 2012 Olympics are shown in the histogram. The mean of these heights is 160.98 cm and the standard deviation is 8.52 cm .
a. Mark the location of the mean on the horizontal axis. Draw vertical lines on your graph such approximately 95% of the data falls between your lines. (This is just a quick eyeball estimate.)
b. Calculate the height that is one standard deviation below the mean and the height that is one standard deviation above the mean.

Height of 2012 Olympic Gymnasts

$160.98-8.52=$ \qquad cm
$160.98+8.52=$ \qquad cm
c. Now calculate the heights that are two standard deviations from the mean. Mark these values on the horizontal axis.
d. According to the raw data, 172 of the 180 gymnasts had heights within two standard deviations of the mean. Calculate the percent of the gymnasts who had heights in this interval.

The 95\% Rule

If a distribution of data is approximately symmetric and bellshaped, about \qquad \% of the data should fall within two standard deviations of the mean.

How many standard deviations are between $\bar{x}-2 s$ and $\bar{x}+2 s$?

Figure 2.18 Most data are within two standard deviations of the mean

(Graphic Source: Statistics: Unlocking the Power of Data, by Lock, Lock, Lock, Lock, and Lock)
2. Consider this histogram of a sample of textbook prices.
a. Estimate the mean: \qquad Mark its location on the horizontal axis.
b. Estimate an interval centered at your mean that contains approximately 95% of the data. Draw vertical lines on your histogram at these values.
\qquad to \qquad

Textbook Prices

c. Since this distribution is roughly bell-shaped and symmetric, about 95% of the textbook prices fall within \qquad standard deviations of the mean. (See page 1.)

This tells us we can take the width of our interval in (b) and divide it by \qquad to estimate the standard deviation. Use this method to estimate the standard deviation for textbook prices.
3. This distribution shows retail sales in the U.S. for the 136 months beginning January 2009.
a. Estimate the mean and standard deviation.
b. Have one person in your group open StatKey. Go to One Quantitative Variable and choose "Monthly Retail Sales" from the drop-down list of data sets. How do the actual mean and standard deviation compare with your estimate?

4. Suppose the heights of all men are approximately symmetric and bell-shaped with a mean of 70 inches and a standard deviation of 4 inches.
a. Assume the tick marks are spaced a distance of 1 standard deviation apart. (Refer to Figure 2.18 on page 1.) Label the mean height, and the heights that are 1,2 , and 3 standard deviations
 above and below the mean.
b. About 95% of men have heights between \qquad and \qquad inches. Shade the area under the curve that represents these men.
c. About what percent of men have heights outside the height interval in (b)? Shade the area under the curve that represents these men.

d. About what percent of men are shorter than 62 inches? Shade the area under the curve that represents these men.

The Pth percentile is the value of the quantitative variable, like height, that is greater than P percent of the data.
e. Based on your answer for (d), men with heights of 62 inches therefore have a height in the
\qquad percentile.
f. A man has a height in the $60^{\text {th }}$ percentile. Shade an estimated area under the curve that represents this scenario. Then estimate the man's height.

5. In statistics, we will use the variable " z " to represent the number of standard deviations a data value is from the mean. We will call this value a \mathbf{z}-score. Recall from the previous page that the heights of all men are approximately symmetric and bell-shaped with a mean of 70 inches and a standard deviation of 4 inches
a. The height 66 inches has a z-score of -1 . Why?
b. Find the z-scores for the following heights.

78 inches: $\mathbf{z}=$ \qquad

58 inches: $\mathbf{z}=$ \qquad
70 inches: $\mathbf{z}=$ \qquad
c. Label the distribution above with the z-scores underneath their corresponding heights.
d. Use the graph to estimate the z-score for a height of 68 inches: $z \approx$ \qquad

A \mathbf{z}-score is the number of standard deviations a data value is from the mean. We calculate z as follows:

$$
z=\frac{\text { data value }- \text { mean }}{\text { standard deviation }}
$$

For samples, this looks like: $Z=\frac{x-\bar{x}}{s} \quad$ For populations, this looks like: $Z=\frac{x-\mu}{\sigma}$
e. Use the formula to verify the z-score you estimated in (5d).

Calculator Tip

Hit $=$ after subtracting.
Then divide.
6. The following is a dotplot of the same gymnast height data from Problem 1.

Suppose a gymnast from this group states their height is in the $90^{\text {th }}$ percentile.
a. What percent of the heights are higher than this gymnast's height? \qquad
b. With 180 gymnasts, how many of the gymnasts are taller than this gymnast? \qquad
c. Use the count in (b) and the dotplot to find the gymnast's height. \qquad
d. Calculate the z-score for their height using the mean and standard deviation from Problem 1.
e. Which is more unusual: A man with a height of 66 inches (Problem 5) or the height of this gymnast? How do you know?

2.3 (Part 2): The 95\% Rule, z-Scores, and Percentiles

1. The heights of gymnasts in the 2012 Olympics are shown in the histogram. The mean of these heights is 160.98 cm and the standard deviation is 8.52 cm .
a. Mark the location of the mean on the horizontal axis. Draw vertical lines on your graph such approximately 95% of the data falls between your lines. (This is just a quick eyeball estimate.)
b. Calculate the height that is one standard deviation below the mean and the height that is one standard deviation above the mean.

$$
160.98-8.52=\ldots 152.46 \ldots \mathrm{~cm}
$$

$160.98+8.52=$ _169.5__cm
c. Now calculate the heights that are two standard deviations from the mean. Mark these values on the horizontal axis.

$$
\begin{aligned}
& 160.98-2(8.52)=143.94 \\
& 160.98+2(8.52)=178.02
\end{aligned}
$$

d. According to the raw data, 172 of the 180 gymnasts had heights within two standard deviations of the mean. Calculate the percent of the gymnasts who had heights in this interval.

$$
p=\frac{172}{180} \approx 0.956=95.6 \%
$$

The 95\% Rule

If a distribution of data is approximately symmetric and bellshaped, about _95_\% of the data should fall within two standard deviations of the mean.

How many standard deviations are between $\bar{x}-2 s$ and $\bar{x}+2 s$?
\qquad
4_-
(Graphic Source: Statistics: Unlocking the Power of Data, by Lock, Lock, Lock, Lock, and Lock)
2. Consider this histogram of a sample of textbook prices.
(Estimates will vary.)
a. Estimate the mean: \qquad \$82 \qquad
Mark its location on the horizontal axis.
b. Estimate an interval centered at your mean that contains approximately 95% of the data. Draw vertical lines on your histogram at these values.
\qquad \$42 \qquad to _\$122 \qquad

Textbook Prices

c. Since this distribution is roughly bell-shaped and symmetric, about 95% of the textbook prices fall
\qquad standard deviations of the mean. (See page 1.)

This tells us we can take the width of our interval in (b) and divide it by _4__ to estimate the standard deviation. Use this method to estimate the standard deviation for textbook prices. $\$ 122-\$ 42=\$ 80 \rightarrow \$ 80 / 4=\$ 20 \quad$ OR $\$ 82-\$ 42=\$ 40 \rightarrow \$ 40 / 2=\$ 20$

The standard deviation is estimated to be about $\$ 20$.
3. This distribution shows retail sales in the U.S. for the 136 months beginning January 2009.
a. Estimate the mean and standard deviation.
$\bar{x} \approx \$ 300$ billion

Four stdev = \$375B - \$225B = \$150B
One stdev = \$150B/4 = \$37.5B
b. Have one person in your group open StatKey. Go to One Quantitative Variable and choose "Monthly Retail Sales" from the drop-down list of data sets. How do the actual mean and standard deviation compare with your estimate?

4. Suppose the heights of all men are approximately symmetric and bell-shaped with a mean of 70 inches and a standard deviation of 4 inches.
a. Assume the tick marks are spaced a distance of 1 standard deviation apart. (Refer to Figure 2.18 on page 1.) Label the mean height, and the heights that are 1,2 , and 3 standard deviations above and below the mean.

b. About 95% of men have heights between _62_ and _78_ inches. Shade the area under the curve that represents these men.

c. About what percent of men have heights outside the height interval in (b)? Shade the area under the curve that represents these men.
$100 \%-95 \%=5 \%$

$5 \% / 2=2.5 \%$

The Pth percentile is the value of the quantitative variable, like height, that is greater than P percent of the data.
e. Based on your answer for (d), men with heights of 62 inches therefore have a height in the _2.5th \qquad percentile.
f. A man has a height in the $60^{\text {th }}$ percentile. Shade an estimated area under the curve that represents this scenario. Then estimate the man's height.

About 71 inches

5. In statistics, we will use the variable " z " to represent the number of standard deviations a data value is from the mean. We will call this value a \mathbf{z}-score. Recall from the previous page that the heights of all men are approximately symmetric and bell-shaped with a mean of 70 inches and a standard deviation of 4 inches
a. The height 66 inches has a z -score of -1 . Why? It is one standard deviation below the mean.
b. Find the z-scores for the following heights.

78 inches: $\mathbf{z}=\ldots 2$ \qquad
58 inches: $\mathbf{z =}$ \qquad
\qquad
70 inches: $\mathbf{z =}$ \qquad 0__
c. Label the distribution above with the z-scores underneath their corresponding heights.
d. Use the graph to estimate the z-score for a height of 68 inches: $z \approx$ \qquad -0.5 \qquad

A \mathbf{z}-score is the number of standard deviations a data value is from the mean. We calculate \mathbf{z} as follows:

$$
z=\frac{\text { data value }- \text { mean }}{\text { standard deviation }}
$$

For samples, this looks like: $\quad Z=\frac{x-\bar{x}}{s} \quad$ For populations, this looks like: $\quad Z=\frac{x-\mu}{\sigma}$
e. Use the formula to verify the z-score you estimated in (5d).

$$
z=\frac{68-70}{4}=\frac{-2}{4}=-0.5
$$

6. The following is a dotplot of the same gymnast height data from Problem 1.

Calculator Tip Hit $=$ after subtracting. Then divide.

Suppose a gymnast from this group states their height is in the $90^{\text {th }}$ percentile.
a. What percent of the heights are higher than this gymnast's height? _ 10%
\qquad
b. With 180 gymnasts, how many of the gymnasts are taller than this gymnast? 10% of $180=18$
c. Use the count in (b) and the dotplot to find the gymnast's height. \qquad 173 cm \qquad
d. Calculate the z-score for their height using the mean and standard deviation from Problem 1.

$$
z=\frac{173-160.98}{8.52}=\frac{12.02}{8.52} \approx 1.41
$$

e. Which is more unusual: A man with a height of 66 inches (Problem 5) or the height of this gymnast? How do you know? The gymnast's height is more unusual since it is farther from the mean (higher absolute z-score).

